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ABSTRACT

Annual hourly (or shorter) energy simulations are an
important part of the design and analysis of ground-coupled
heat pump systems. In order to evaluate the fluid temperature
in the borehole of a geothermal heat pump system, most of the
current models express the heat transfer rate as a sum of step
changes in heat transfer rate. The borehole temperature is then
computed as a superposition of the different contributions of
each time step. The main difference between the different
models lies in the way the step response is computed, whether
a cylindrical heat source method, a line source method, or a
tabulated numerical step response approach is used. Since all
these methods are based on a convolution scheme, long time
simulations are very time consuming since impulse response is
recomputed at each time step. Many load aggregation algo-
rithms have been proposed in order to reduce this computa-
tional time. In this paper, we present a new algorithm to
evaluate the overall response, which is much faster than the
classical convolution scheme.

INTRODUCTION

Ground-coupled heat pump (GCHP) systems are very
effective in lowering the energy used to heat and cool residen-
tial and commercial buildings. The main factor that limits the
growth of such systems is the initial cost of the borehole in the
ground. As energy cost will increase, this cost will become
relatively lower, and it is believed these systems will be very
attractive in the near future. Still, the length of the ground
exchanger will always be a very important factor, and a lot of
research has been done in the design and analysis of this part
of the GCHP system. Most of the models are based on the solu-
tion of the impulse response on a heat pulse in the borehole. The
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difference in the models is mostly in the way the heat conduc-
tion problem in the ground is solved and the way the interfer-
ence problem between boreholes is treated A good survey of
the different models is given by Yavuzturk (1999). Without
going too much into the details of these methods, we may split
these methods into two main approaches: analytical and
numerical methods. In both cases some workers analyze only
a one-dimensional transient problem in the radial direction,
where T(r, £) is sought in the field considered, whereas some
models are based on the solution of the axisymmetric problem
T(rz,f). A lot can be said about the validation of both
approaches. For example, the radial problem does not give a
steady-state solution; it has a logarithm singularity at infinity.
One may argue about its validity after a long period of time
(Eskilson 1987) if the load is constant. In the case of a symmet-
ric annual load, this long-term effect should, however, not be so
important. In any case, many design programs, such as the ones
by Kavanaugh (1985) and Bernier (2001), use such a solution
and give good results, as mentioned by Shonder et al. (1999).

Analytical methods are also given for the axisymmetric
problem by Zeng et al. (2002), but most of them solve the
radial problem, and the two major solutions used are the line
source solution of Kelvin and the cylindrical heat source
method. In both cases, they suffer from the fact that the solu-
tion is given in terms of a convolution solution, where each
term has to be recomputed at each time step. This is the reason
why the computing time is proportional to the square on the
time interval. This precludes their use for a short time step (an
hour or less) and/or for long period of time (a year or more).
In order to reduce the computing time, Yavuzturk and Spitler
(Yavuzturk 1999; Yavuzturk and Spitler 1999) proposed the
concept of aggregation for loads that were applied a long time
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before the actual time when the temperature is sought. They
define a minimum hourly time history (MHTH) where no
aggregation is done and also an aggregation period where a
mean load for this aggregation period is computed and used in
the simulations. This approach diminishes the simulation time
by 90% for a year’s simulation. Bernier et al. (2004) also
proposed a multiple-load aggregation algorithm (MLAA) in
order to cope with the same problem. In this paper, we present
a very effective algorithm to solve the same heat conduction
problem that is not history-dependent and is very efficient.

PROBLEM FORMULATION

The heat exchange problem in a buried vertical borehole
can be formulated with respect to the schematic in Figure 1. If
we neglect axial temperature variation, the basic problem is to
find the temperature distribution 7(r,f) satisfying the heat
conduction equation,

ool 1o (1)
for the domain » > r,, ¢ > 0, and the following boundary
conditions:
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where g,'is the heat flow per unit length g,' is often referred to
as the heat entering the borehole; here we keep the normal
convention as the heat in the positive radial direction). In the
case of step-function g,'(f) = g, u(%), the solution is well known
and is given in the classic book of Carslaw and Jaeger (1947).

Figure 1 Schematic of the borehole.
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where 7 = r/(r,, 1) = (o:t)/rfJ = Fourier number.

This solution is known as the cylindrical heat source
method (CHSM). Those using this solution for the analysis of
GCHP systems (Kavanaugh 1985; Bemier 2001) use an
analytical approximation of the G-function in their computa-
tion with the extension of arbitrary loads and the following
expression:
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In order to describe our new algorithm, we will solve
again the heat conduction problem. Whereas Carslaw and
Jaeger (1947) use the Laplace transform technique to present
their solution, we will use Green’s function formalism here.
The solution of the general heat problem is well explained by
Ozisik (1993):

I(r,1) = [ f{(P)H(r, p, Dpdp

+ %I(;qb"(T)rbH(” rp, t—1)dt (5)
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where ¢ is the volumetric heat source distribution, fi(r) is the
temperature distribution for ¢ =0, and H (r, p, t — 1) is what is
known as the Green’s function associated to the problem. The
symbol G is normally associated with this function, but we
will use A here in order not to confuse it with the cylindrical
heat source function. Since, in our problem ¢ = 0 and with

the change of variable, 7 = T— T,, we have

T(r,f) = 2%{ j'o’q,,(r)H(r, rpt—T)dt . (6)

Following Ozisik (1993), we can find the Green’s func-
tion by solving the associated problem with homogeneous
boundary conditions:
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for the domain » > b, ¢t > 0, and the following boundary
conditions:
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Solving the problem and comparing with the Green’s
formalism solution,

I(r.0) = [f{(p)H(r, p, Dpdp , ©)
we can get the associated Green’s function by association. This

associated problem can be solved by the Weber transform, but
we will directly use the solution given by Cole (2000),

1 p —ap’t-1) BR(HR(r,)
H(r,r,,t—1) = —| e dpg , (10)
’ b [J3(Br,) + Y1 (Bry)]
where
R(r) = J,(Br)Y (Bry) - J,(Bry) Y, (Br) . (11)
Inserting this solution into Equation 6, we get
. (- BR(r)R(ry)
T(r,t) = 2 tq ()| e Fa-m dpdrt
sakh L [/3(Bry) + Va(Bry)]
(12)
With Equation 11, we can simplify:
R(ry) = J,(Bry)Y,(Bry) - Jy(Bry)Y,(Bry) = ,ﬁ (13)
Tr, ) = —={'q,'(v) b= R(r) dpdt
nzrbk'[o Ok [J3(Bry) + Y1(Br,)]
(14)

If we apply a step change of heat, the response is:
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where

FEr/r,t= at/r,z,, and z = Br,, which is the expected
result.

NONHISTORY-DEPENDENT SCHEME

As mentioned in the introduction, the major problem with
the convolution scheme is that, at each time step, the weighted
G-function has to be recomputed, which results in an algo-
rithm that is proportional to N, where N is the number of time
steps. The idea of our new scheme is similar to the one of
Greengard and Strain (1990) in the context of the boundary
element method (BEM) for transient heat transfer problems.
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In their case, the problem was even greater, since they used, as
is the usual case in BEM, the fundamental solution to Green’s
function as the kernel of the boundary integrals:
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where r = |x—§|.

The difficulty arises from the coupling behavior of the
Green’s function as the space and time integration variables
appear in the exponential term. In order to overcome this prob-
lem, they had to use some kind of Fourier expansion of the
Green’s function. In our particular GCHP problem, the inte-
gral solution is already in the form of a degenerate kernel since

the space variable and the time variable are uncoupled. This
facilitates the scheme.

Let’s start with the general solution described in the previ-
ous section (Equation 14);

W (F)Y (2) -y (2)Y,(F2) . -
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If we interchange the order of integration:
1 4, (72)Y1(2) -1 (2)Y (F2)
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In order to simplify the notation, we will make the change
of variable:

. J,(72)Y((2) - T (2)Y (¥2)
v(F,z) =
1) + Yo(2)]
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Let us assume that the improper integrals converge
correctly and that we can keep a finite number of terms in the
approximation of the integral:
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Atthe next time interval, we can evaluate the new temper-
ature distribution:
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